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DETECTION PERFORMANCE OF GENERALIZED LIKELIHOOD
RATIO PROCESSORS FOR RANDOM SIGNALS OF UNKNOWN
LOCATION, STRUCTURE, EXTENT, AND STRENGTH

INTRODUCTION

Reliable detection of weak signals in noise is aggravated
when the signal has little or no structure that can be utilized
in processing the received waveform. Yet, this is a problem
frequently encountered in practical applications and which must
be addressed quantitatively in order that attainable performance
levels can be established and realized. If significant gains
relative to simple energy detection are possible, this fact must
be known; also, alternative improved processing techniques must
be discovered. Furthermore, the robustness of the alternative
techniques to lack of knowledge of the detailed signal
characteristics is a critical issue that must be addressed and
quantified.

The problem we consider here is couchea in the frequency
domain, where a known search region of N disjoint bins contain
noise which is uniformly distributed over that entire frequency
region. 1In addition, either a signal is present in M of those
frequency bins, or the signal is absent from all bins. The
processing problem is to maximize the detection probability when
signal is present, while keeping the false alarm probability

fixed at some desirable specified low level.
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To complicate the situation, the number of occupied signal
bins M is unknown; that is, the extent of the signal coverage
(total bandwidth) is not known apriori. Furthermore, the M
occupiel signal bins need not be adjacent in frequency or have
any discernible pattern in frequency space; that is, the signal
spectrum has no usable structure (such as harmonic lines or
contiguous bins) that might aid in signal processing and
detectability.

Additionally, the actual locations L of the particular M
occupied signal bins (when signal is present) are unknown, except
that they must occur somewhere in the total search space of N
bins. It is assumed that all of the possible occupancy patterns
for the set L of M occupied bins are allowed.

Finally, the actual average signal powers per bin (presumed
equal to a common value S, for the most part here), are not
known; lack of this signal strength information (as well as no
knowledge of M or L) precludes realization of any optimum
processing technique, which would necessarily rely on and use
that information.

The absence of knowledge of these important signal parameters
(M, L, S, structure) causes us to adopt maximum likelihood
estimation procedures and their attendant generalized likelihood
ratio processors. Depending on the particular starting points of
the analyses, namely the initial assumptions about the signal
parameters, different forms of processors result. This leads to

several classes of processors which must be analyzed, either
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analytically or by simulation. Then, comparisons of these
processors are possible and required, thereby enabling
establishment of a baseline performance level in this rather
deleterious environment. Some recent work along this line is
available in [1), where a modified generalized likelihood ratio
processor was quantitatively evaluated in terms of its receiver
operating characteristics. Knowledge of those procedures and
results is presumed of the reader here.

The generalized likelihood ratio processor is not necessarily
an optimum procedure for signal detection. Rather, it is an ad
hoc procedure frequently adopted for convenience, rationality,
and for the fact that it generally yields reasonable processing
forms and performance capabilities. However, it must be noted
and cautioned there are cases where the generalized likelihood
ratio test can actually yield poor performance [2; page 96].

Althou¢ .1 the present search and detection problem has been
couched in the frequency domain, this is done solely for ease of
discussion. The analyses and results actually apply to any
search domain, such as time, distance, angle, or combinations of
these variables. For example, a typical application could
require a search in a combined time, frequency space, where the
total search region of N bins would be composed of a rectangular
region of size N = N, N.. However, it will be necessary to
investigate if the fundamental assumptions utilized in this
study, such as lack of structure, apply in the particular

domain(s) of interest to the user.




TR 10739

This technical report is the second of a series of four NUWC
technical reports by this author, covering the topics:

(a) modified generalized likelihood ratio processors,

(b) generalized likelihood ratio processors,

(c) power-law processors, and

(d) optimum processing,
respectively. Topic (a) was completed in [1], resulting in a
substantial compilation of receiver operating characteristics for
the particular modificatior considered there. Topic (b) will be
addressed in this report. The overall goal of the extended
investigation is to determine classes of processors which perform
at or near optimum levels of performance, and which can be easily
realized and analyzed, even in these situations of scant

knowledge about the detailed signal characteristics.
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PROBLEM DEFINITION

The search space consists of N (frequency) bins, each
containing independent identically-distributed noises of unit
power. This is presumed to be accomplished by an earlier
normalization procedure. The number N is under our control and
is always a known quantity. When signal is absent, hypothesis
Hy, the probability density function of each of the bin outputs
is completely known.

When signal is present, hypothesis Hy, the quantity M is the
actual number of bins occupied by signal. When M is unknown, we
will hypothesize that M bins are occupied by signal. (If M is
presumed known, we can take M equal to that presumed known value
if we please.)

The gquantity L is the actual set of bins occupied by signal,
when signal is present; for example, if M = 4, then we might have
the set L = {2,3,7,29}. When L is unknown, we hypothesize that
L is the occupied set of bins, for the previously hypothesized
value of M. Thus, the size of set L is equal to M. (If L is
presumed known, we can take L equal to that presumed known set if
we please.)

The quantities {5,] are the actual average signal powers per
bin in occupied set L, when signal is present. When these signal
powers {§n} are unknown, we hypothesize signal powers {Sn or S}
for hypothesized size M and set L, depending on whether we
presume these powers are all different or all equal,

respectively. (These average signal powers l§n} will usually be
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unknown in practical applications.)

For these hypothesized quantities M, L, and {5, or S} of the
unknown parameters, we can determine the likelihood ratio for a
given (random) observation {xn}. Then, since the probability
density function Py of the observation {x,} under hypothesis Hy
is completely known, we can maximize this likelihood ratio
(instead of maximizing density Pq of the observation {x,} under
hypothesis Hl) by variation of M, L, and {Sn or S}, over all
their allowed values, thereby obtaining maximum likelihood
estimates M, L, and {Sn or S} of the unknown parameters. These
estimates are random variables, because they depend on the
particular observation (xn}. Comparison of this maximum
likelihood ratio value, called the generalized likelihood ratio,
with a fixed threshold constitutes the generalized likelihood
ratio test. Simplifications of this test are frequently
possible.

It was mentioned above that when the number of bins M
occupied by signal is presumed known, we could set M equal to
this presumed value, thereby eliminating the search on this
parameter. However, a problem with this approach is that, in
practical applications, the actual number of occupied signal
bins, M, may be different from the number M presumed during the
derivation of the processor. This mismatch between the presumed
and actual numbers can lead to a degradation in performance.
Quantitative evaluation of this degradation is one of the main

topics of this study.

-
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There are three cases that can obtain relative to the
available knowledge about the value of M, the actual number of
occupied signal bins. In the first case, M could be known
exactly; that is, the total signal frequency extent is known
exactly, although the precise bin locations and structure are
not. This might arise in trying to intercept a frequency-dodging
diversity-combining communication message.

In the second case, M might be completely unknown; that is,
the signal frequency extent could be anything, from a very narrow !
band (tonals) up to a broad band of frequencies. This situation
could occur when there is no apriori knowledge about the signal
to be detected. It could also occur in the initial stages of
searching for a general signal of unknown center frequency and
extent.

Finally, in the third case, size M might be partially known.
Thus, the signal frequency extent may be known within fairly
broad limits, say, for example, from 50 Hertz to 200 Hertz,
within a total search band of 1000 Hertz. This situation could
obtain when partial information is available about the signal of
interest. The three different cases will naturally lead to
different processors, each of which makes use of the information

available to it.

7/8
Reverse Blank
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DERIVATION OF GENERALIZED LIKELIHOOD RATIO TESTS
PROBABILITY DENSITY FUNCTIONS FOR KNOWN SIGNAL PARAMETER VALUES

We now specify the detailed character of the probability
density functions Py and p;., introduced above, under hypotheses
H, and H,, respectively. In both hypotheses, the bin outputs or
observations {xn} are taken as the squared envelopes of
outputs of (disjoint) narrowband filters subject to a Gau. ..ian
input random process; alternatively, the observations are the
magnitude-squéred outputs of a fast Fourier transform subject to
a Gaussian input process. It is assumed that these outputs {xh}
are statistically independent of each other, which is consistent
with a frequency-disjoint requirement.

Since the bin output noise has been normalized at unit level,

the probability density function of the n-th observation X is,

under hypothesis Hy, an exponential of the form

qo(un) = exp(-un) for u, >0, 1 <n<N. (1)

When signal is present, with signal power Sh in the n-th bin, the

density of x is changed in this signal-present hypothesis H,, to

ql(un) =a, exp(-_a_n un) for u, >0, 1 <n<N, (2)

where we have defined the parameter

1
=—+Tnﬁl for 1 < n £ N. (3)

Observe that actual signal power S, can also be interpreted as
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the actual signal-to-noise power ratio per bin, since the noise
power per bin has been normalized at unity.

The probability density function governing the complete
observation {xn] under Hy follows from (1) and the statistical

independence as
N
po(ull"'luN) = l {{exp(-un)} . (4)
n=
On the other hand, under Hy, the pertinent density is, from (2),

Py(u,,.-.,uy) =71 [{a_ exp(-a_u )} T [{exp(-u_ )} , (5)
1717 N neL n n n n£L n
where L is the actual occupied set of signal bins.
If L and {§n] were all known, the likelihood ratio for
observation {xn} would be given by random variable
pl(xll"‘lxN)

LR = Po(Xyse-erXy) = I:I(gn exp([1-a,] xn)] =

= TTia,) exp(_ v, x] - (6)

nel nel
where we have defined weights
Sy

v_qn=1—2n=—1-—7-—-s_r—‘ fOI'nE_I_:_- (7)

Therefore, the likelihood ratio test in this ideal case is given

by the weighted linear sum comparison with fixed threshold v:

S _wox LV . (8)

10
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PROBABILITY DENSITY FUNCTIONS FOR UNKNOWN SIGNAL PARAMETER VALUES

Unfortunately, the optimum test in (8) cannot be realized in
practice, because the occupied set L will not be known and the
signal strengths |§n} in the occupied bins will not ke known. To
circumvent these problems, we will now consider employing maximum
likelihood estimates for the unknown parameters.

When signal is present, suppose we hypothesize that:

(1) M bins are occupied by signal,
(2) L is the specific set of M occupied bins, and

(3) {Sn} are the signal powers per bin for neL. (9)

Then, by reference to (5), the probability density function

governing the observations under Hy is

Py(uy,eesuy) = I:Ilan exp(-a; u )} I;I{eXP(-un)l . (10)

where we defined parameters

I S
a, = 1% Sn £1 for 1l <n<N. (11)

On the other hand, under Hy, we simply set all signal powers
{s,} to zero, obtaining probability density function (4) again.
Since this latter function, Py is independent of all the
parameters hypothesized above in (9), we can obtéin the maximum

likelihood estimates by maximizing the likelihood ratio instead

of maximizing probability density function Py- The likelihood

11
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ratio, for given random observation {xn}, parallels (6) and (7),

but using (10) now, namely

pl(xll”°lxN)
LR = = | 1- ] . 12
po(xl,...,xN) neL[an exp(l[ an] xn) (12)
At this point, in order to make further progress, we have to
consider two different possibilities for the signal strengths;

these are:

(1) all powers equal: S, =S for nel; or

(2) all powers different: S, arbitrary for neL. (13)

We will derive the generalized likelihood ratios for both
situations, and then extract the corresponding tests for two
different cases of knowledge aboﬁt M, the actual number of bins
occupied by signal.

The problem we are addressing here is a noise in noise
problem; that is, the filter bank input is a white Gaussian
process under Hy, while it is a colored Gaussian process under

H However, the coloring is not known, nor is the extent or

1.
strength of the coloring known. This lack of information leads
to complications in signal processing and in the subsequent

determination of the detection capability.

12
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ALL SIGNAL POWERS EQUAL

Here, we presume that all the signal powers are equal in the
occupied bins, and we set S, =852 0 for all n ir hypothesized

set L. Then, define parameter

<1 . (14)
The likelihood ratio in (12) reduces to

IR = a' exp((l -a)y xn] . (15)
nelL

where we used the fact that set L is of size M. An important
observation to make immediately from (15) is that the data {x,]
will be subject to addition of linear quantities in these
observations, regardless of how we choose M and L, at least in
this case of presumed equal signal powers.

The value of parameter a that maximizes LR in (15) is random

variable

a= min[l,M/ %;% xn] , (16)

where we satisfied constraint (14). The corresponding signal

power estimate is, from (14),

S = max[o,ﬁ ) (xn—l)] . (17)

neL

Substitution of estimate (16) in (15) yields the generalized

likelihood ratio

13
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GLR = exp[M g[% n:d‘ xn]] , (18)

where monotonically increasing function g is defined by

x -1 - 1ln(x) for x 21
g(x) = { } . (19)
0 for x <1

Now, we must maximize the argument of the monotonically
increasing function exp in (18) by choice of set L and size M.

If the actual set size M is known, then we would take
hypothesized value M equal to known value M; reference to (18)
and (19) reveals that we could then concentrate on maximizing the
sum in (18), where set L is now restricted to be of size M. But,
set L should obviously then be taken to correspond to the M
largest members of observation {xn].

At this point, it is expedient to consider ordering the
measured data {xn]. Specifically, order the given data {xn] from

largest to smallest according to

(20)

Thus, xi is the largest element of {xn], while xﬁ is the smallest
element of [xn].

We can now easily achieve the desired maximum of the sum in
(18) in terms of the ordered random variables [xﬁ}; namely, the

generalized likelihood ratio test takes the form

M
:xﬁiv. (21)

n=1

14
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That is, we must order the data, add the first M ordered
variables, and compare with a fixed threshold v. This is the
generalized likelihood ratio test for equal signal powers and
known occupancy size M.

This test makes a great deal of sense. The only way that a
signal displays its presence in the observed data {x, 1} is through
an increase in the means in M bins of unknown location; see (1)
and (2), where the mean increases from 1 to 1+§n in the n-th bin,
when signal is present. Test (21) says to consider the M largest
data values and see if their sample mean is sufficiently large to
declare that a signal is present.

On the other hand, if the actual set size M is not known, the

generalized likelihood ratio in (18) dictates the test

=i
[

max [M g[% max 3 xn]] =  max [M g( xﬁ]} Z v, (22)
2

M, SM<M MIS.MSM2

1 n=1

where the size of set L is M, and it is presumed that set size M
is known to be within a range of values, [MI'MZ]’ which must be
searched. Again, the ordered data must be linearly summed, then
averaged, but now subjected to monotonic transformation g in
(19). Although there is no obvious physical interpretation of
test (22), it is easily realized once the given data (x,} has
been ordered; the search on M itself is not too time consuming.
Operation (22) is the generalized likelihood ratio test for equal

signal powers and unknown occupancy size M.

15
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ALL SIGNAL POWERS ARBITRARY

Here, we presume that hypothesized signal power S, 2 0 for
all n in hypothesized set L of size M. The likelihood ratio was
given in (12) for this case, where parameter a,  was given by
(11). The value of an that maximizes the n-th term in (12) is
random variable

a, = min{l,l/xn) for nelL . (23)

The corresponding maximum of (12) is then the generalized

likelihood ratio

GLR = T T{explg(x )1} = exp[: g(xn)] . (24)
nel nel
where function g was defined in (19). It is important to observe
here, in the case of arbitrary signal powers, that the given data
{x,} is always transformed according to nonlinearity g, prior to
being summed over hypothesized set L; this is in contrast to the
linear sum (15) for equal signal powers.

Now, we must maximize the argument of the exp function in
(24) by choice of set L and its size M. If the actual set size M
is known, then we would take M equal to M; then, using the
monotonicity of function g, set L in (24) should obviously be
taken to correspond to the M largest members of data {xn}. This

leads to the test

M
%;; g(x/) Z v . (25)

16
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This is the generalized likelihood ratio test for arbitrary
signal powers and known occupancy size M.

On the other hand, if the actual set size M is unknown, the
generalized likelihood ratio in (24) dictates the test

M2 S
E 9(x)) (V. (26)

where it is presumed that there is some upper bound, M,, on the
range of values allowed for M. Processor (26) is the generalized
likelihood ratio test for arbitrary signal powers and unknown
occupancy size M.

Both tests, (25) and (26), subject the ordered data {xﬁl to
a small-signal suppression effect, which is inherent in function
g, prior to summation. That is, from (19), g(x) ~ %(x - 1)2 for
x ~ 1. However, if M or M, is a small fraction of the total
search size N, the larger data values in the ordered set will
dominate these tests. And since function g in (19) is nearly
linear for larger arguments, the zums in (25) and (26) will be
essentially linear sums in this situation of small M/N or M,/N,

respectively.

17/18
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SUMMARY OF ANALYTICAL RESULTS FOR ORDERED DATA

The generalized likelihood ratio test for equal signal powers

and known occupancy size M was given in (21) in the form

(=
]
o 303
ANV
<

(27}

where {xﬁl is the ordered version of given data {xn}. However,
when M is unknown, this test cannot be realized. Nevertheless,
it does suggest a closely related alternative; namely, for
hypothesized size M, consider the sum of the M largest random
variables, where M is a best quess or mid-range value of M. That

is, consider the decision variable z given by

(28)

N
]
pos
] mz
—
Ll
=~
v
<

The performance of this sum-of-M-largest processor will depend
upon both the hypothesized size M as well the actual size M of
the occupied signal bins, in addition to the actual signal power
per bin, S. Evaluation of the receiver operating characteristics
of this processor will occupy much of the remaining effort here.

Although the original data [xn} is independent identically-
distributed exponential random variables under Hy, the ordered
data [xﬁ} is not independent, not identically distributed, and
not exponential or Gaussian. Thus, (28) constitutes the

classical problem of finding the statistics of the output of a
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digital filter subject to a non-Gaussian input process with
dependent data values.

The most important analytiéal problem of interest here is in
finding the first-order statistics of random variable z defined
in (28). This problem is solved in appendix A, in particular in
(A-11), where the characteristic function of z is derived exactly
in closed form for hypothesis H,, namely independent identically-
distributed exponential random variables for original input {x 1.
At the same time, with the framework already established, a
number of extensions have been analyzed, which could form the
bases for future studies on signal processing involving ordered
data. These results are summarized below.

The characteristic function of the py-th largest random
variable x& is given in (A-23), while the joint characteristic
function of the p-th and v-th largest random variables, xL and
X0 is given in (A-25), and the characteristic function of
difference xb - X is given in (A-33). The joint characteristic
function of xLl,...,xLM is given in (A-34), and then specialized
to the joint characteristic function of XipeoosXy in (A-38).

Some more general cases are undertaken in appendix B. The
joint characteristic function of xi,...,x' for independent but

N
differently distributed exponential random variables is given in

(B-12), and then specialized in (B-17) to the case where a subset
of M of these variables have one density while the remaining N-M
random variables have a different density. This has obvious

applications to finding the statistics of sum variable 2z under
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hypothesis H, rather than Hye

The further specialization to all N variables having the same
density leads to (B-18) for the joint characteristic function.
Finally, the characteristic function of a weighted sum of ordered
random variables is given by (B-20). This last investigation 1is
aimed at trying to improve the performance of test (28) by
replacing M by N, and by weighting the larger data points more
heavily. In particular, in appendix C, the maximum deflection of
the weighted sum of ordered data is solved in (C-9) and (C-10).
However, the deflection is not a complete descriptor of
performance, involving no more than second-order moments. Also,
(C-10) requires extremely accurate calculation of the means [pln}
and {Hop! in order to retain any significant digits in the
optimum weights {Wn}.

Finally, in appendix D, an investigation into distortion of
the data, after it has been ordered, is conducted. The
motivation behind this study is again to see if improved
detection performance can be achieved. For independent
identically-distributed random variables with arbitrary
probability density function p and arbitrary distortion function
h, the characteristic function of the sum of the first M
distorted random variables is obtained exactly in (D-10) or
(D-11).

The rest of apperdix D is devoted to special cases. 1In
particular, the characteristic function of the sum of the M

largest random variables in a set of N independent identically-
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distributed exponential random variables is given by (D-23).

On the other hand, when the distorted random variables are
squared prior to summation, the pertinent characteristic function
is given instead by (D-26) and (D-24).

When these latter two problems are reworked for independent
identically-distributed Gaussian random variables rather than
exponential random variables, the characteristic function for the
linear sum is given by (D-28) and (D-27), while the corresponding
result for a sum of squares is given in (D-30) and (D-29).

Finally, if the original random variables {x ] are N
independent identically-distributed chi-squared random variables
with 2K degrees of freedom, the characteristic function of the

sum of the M largest random variables is given by (D-33).
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SUM-OF-M-LARGEST PROCESSOR

This processor is characterized in (28) as the sum of the
first M random variables of the ordered data set [xﬁ], which is
equivalent to the sum of the M largest random variables of

original set {xn} of size N. The decision variable is

M >
z =) X <V . (28)

CHARACTERISTIC FUNCTION UNDER Ho

Under hypothesis Hy, when noise alone is present, and data
{xn} is composed of N independent identically-distributed
exponential random variables, the exact characteristic function

of output z is given by (A-11) as the compact closed form

£(8) = lN . (29)
(1 - ig)M! T‘r[l - i&%)
n=M

A couple of checks on this result are possible. First, for
M = N, (29) reduces to (1 - iE)'N, which is obviously correct,
since z is then simply the sum of all the original data {x 1. On
the other hand, for M = 1, z is the largest random variable in

set {xn}, that is, z = xi = max{xn}, and (29) reduces to

- 1
£,(E) = : (30)

N iE
M-S
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To verify this last result, observe that the cumulative
distribution function of under Hj is [1 - exp(-v)]N for
threshold v > 0, since all the exponential random variables {x,}
must stay below v. The corresponding probability density
function is N exp(-u) [1 - exp(—u)]N-1 for u > 0, for which the
characteristic function (Fourier transform) is just (30). Here,
we used result (A-17) with the identifications a =1, g = 1, and

K=N-1-

In this special case of M = 1, that is z max[xn], the
exceedance distribution function of output z under Hy is also

immediately available in closed form. It is given by
E;(v) = Pr(z > v|H;) =1 - [1- exp(-av) 1 [1 - exp(-v)1"7Y, (31)

where we have used (1) and (2) with common signal power S and

parameter a = (1 + §)_1. M is the actual number of bins occupied

by signal.
Returning now to general results (28) and (29) for arbitrary

N and M, the mean of sum z under Hy is readily found to be

N

z=M+3 _

n=M+1

SIX

. (32)

This result is required when we employ the numerical techniques
in [3] for accurately and efficiently determining the exceedance
distribution function directly from the characteristic function.
In this case of hypothesis Hy, we will obtain the false alarm
probability directly from characteristic function (29), that is,

P = Pr(z > VIHO), for arbitrary M and N.
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FALSE ALARM PROBABILITY

For M = 1, that is, z = max{xn}, the false alarm probability
follows directly from (31) by setting signal power S = 0, that

is, a = 1, thereby getting
Pe(M=1) = Pr(z > v|]Hj)) =1 - [1 - exp(-v)]Y for v > 0 . (33)

Since this result is easily evaluated, no plots are presented
here for this special case of M = 1, for the sake of brevity.
However, false alarm probability (33) and detection probability
(31) will be used later to generate some of the tabular results
that follow.

Similarly, for M = N, where z is the sum of all the random
variables {x 1, no analyses or plots are given here, because they
have already been given in [1; pages 21 - 22 and 81 - 90)]. Thus,
for the most part, attention is confined to 1 { M < N here.

In figure 1, the false alarm probability P, for M = 2 and for

N = 2K

with k = 1(1)10 is plotted versus threshold v over a range
including Pe values down to 1E-6. Similar sets of false alarm
probability plots are presented in figures 2 - 10 as M varies
over the values 3, 4, 8, 16, 32, 64, 128, 256, 512, respectively.
In every case, the smallest value of N considered is M, because
sum z in (28) is only defined for M < N. These results are very
accurate, even at the 1E-6 level, because the efficient fast
Fourier transform procedure in [3] was employed for going

directly from exact characteristic function (29) to the false

alarm probability, with insignificant aliasing error.
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DETECTION PROBABILITY

In all the numerical results to follow, the total search
space will be taken at the fixed value N = 1024. Then, actual

signal size M will be allowed to vary over the 12 values
M=1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, (34)

which allows us to consider signal structures varying all the way
from tonals to very broadband processes. At the same time,

hypothesized signal size M will vary over the 10 values
M=2, 3, 4, 8, 16, 32, 64, 128, 256, 512, (35)

consistent with the theme above that there is no need to present
the results for M = 1 or M = N. Thus, we have 120 cases to
consider for the detection probability of the sum-of-M-largest
processor. This will allow us to extract extensive quantitative
results on the degradation suffered by mismatching hypothesized
value M to actual (unknown) value M.

Under hypothesis Hy, when signal is present in M bins of the
data [xn} leading to sum z in (28), the characteristic function
of output z cannot be found in any practically useful closed
form. This is true even if the signal powers are all equal to
a common value S in the M occupied bins. This conclusion is
based on the analytical results presented in appendix B,
especially (B-15) - (B-17) coupled with (B-3) - (B-4). A
numerical example for N = 4 and M = 2 in (B-24) and sequel

illustrates the severe complexity of the general result.
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This inability to analytically obtain the characteristic
function of z under H; has forced us to simulate the detection
probability results. An example of the resultant receiver
operating characteristics is given in figure 11, where 8300
independent trials were used for the ten different values of
signal power S considered. The abscissa value, false alarm
probability Pey of each point on these plots is exact, having
been obtained by means of (29). Therefore, we are able to
reliably carry these curves down to the small values for Pe
around 1lE-6.

However, the ordinate value, detection probability Pd' has
jitter (random perturbations) in it due to the limited number of
independent trials, namely 8300 for this particular example.
Since we are usually interested in Py values in the neighborhood
of .5 to .9, this number of trials is sufficient to generate an
accurate receiver operating characteristic in the range of
interest. The jitter is most noticeable in the unimportant upper
right-hand corner of the figure where large Py values near .99
are being estimated, and where Pe is too large to be practically
useful.

The totality of 120 receiver operating characteristics
generated by the cases listed in (34) and (35) are collected
together in appendix E. The number of trials varies widely, from
5600 to 35000 trials, depending upon the time that happened to be
available for the particular run. The signal power per bin, § in
dB, always varies over a range sufficient to cover the useful

values of false alarm and detection probabilities.
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REQUIRED SIGNAL-TO-NOISE RATIO

The voluminous compilation (120 plots) of receiver operating
characteristics in appendix E forces us to condense this
information for easier interpretation and accessibility. To
accomplish this, we define a low-quality operating point
Pe = 1E-3, Py = .5 and a high-quality operating point Py = 1E-6,
P, = .9. We then read off the curves in appendix E the values of

d
signal power S(dB) which are required to realize these two levels
of performance. These results are tabulated in tables 1 and 2
for the low-quality and high-quality operating points,
respectively, for M and M both ranging over the full set of
values 1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024.

It is immediately seen that the best value of M, for minimum
S, is not necessarily M, although the discrepancies are small.
For example, if M = 16, the best value for M is smaller than M,
being in the range 4 to 8. On the other hand, if M = 256, the
best M is larger than M, namely 512. The explanation for this
effect is given in appendix F; it has to do with the fact that
the generalized likelihood ratio processor is not necessarily
optimum.

The results in tables 1 and 2, are plotted in figqures 12 and
13, respectively, with one modification; the ordinates in the
figures are the total signal power required, M S in dB, rather
than just the bin power, S. The total quantity is more

meaningful and it condenses the range of ordinate values to a

more manageable regime.
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Numerous observations can be made from these two figures. We
confine the following numerical examples to figure 12. When
M =N = 1024, the optimum value of M is also 1024, although the
loss in using M = 512 is less than .1 dB. However, if we
continue to use M = 1024 when M has been decreased significantly
below 1024, losses around 9 dB, relative to using M = 1, will be
incurred when M = 1 is reached.

On the other hand, suppose we attempt to always use M =1
regardless of the true value M. Although this selection is
satisfactory for M less than 32 approximately, it will run into
losses greater than 10 dB when the actual value M approaches
1024.

This suggests that if nothing whatsoever is known about M, a
compromise value of M = 32 might be adopted. The loss when M is
actually 1024 is then 2.5 dB, whereas the loss when M is actually
1 is 3.5 dB. For intermediate values of M, say from 16 to 64,
the consistent use of M = 32 is nearly optimum within this class
of processors. Thus, if there is some partial information
available about the range of M values to be encountered, and if
this range is narrow enough, figures 12 and 13 indicate what the
good choices of M are and the degree of loss caused by mismatch.

Figures 12 and 13 bring out one of the significant drawbacks
of the sum-of-M-largest processor, namely that a good choice of
upper limit M in sum (28) cannot be made without some knowledge
about M, the number of bins occupied by signal. It also
indicates that further study into the determination of a more

robust class of processors is warranted and required.
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COMPARISON WITH MODIFIED GENERALIZED LIKELIHOOD RATIO PROCESSOR

The modified generalized likel hood ratio (MGLR) processor
(1] was derived on the basis of an unknown number of occupied
signal bins, M; in fact, the average signal strength S, was
estimated in each and every one of the N bins. However, during
data processing, if the MGLR processor uses the best value of

its breakpoint x_ for the actual current value of M, the MGLR

o
processor has effectively been given knowledge of M. Also, since

the best breakpoint value of x_ is typically large for small M/N,

o
the small-input square-law suppression of nonlinearity

(36)

x -1 - 1n(x) for x 2 X,
gy (%) =

0 for x < x0

is never encountered, since the nonlinearity is virtually linear
for x > X, in this situation.

Thus, when the MGLR processor is effectively using knowledge
of small values M, it is linearly processing only the largest
members of observation {xn]. This is exactly what the GLR
processor considered here does, except that the number of
contributors to the GLR processor output is always exactly M
(regardless of M), whereas the MGLR processor output number of

contributors fluctuates, depending on the actual input data {xn],

N, S, and M.
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This means that we can expect the best performers in the MGLR
class of processors to have comparable performance to the best
performers in the sum-of-M-largest class of processors. This is
borne out by the results in figures 14 and 15, which are
extracted from the receiver operating characteristics for the
MGLR processor in [1]. The lower envelopes of fiqures 12 and 14
are very close over their common range from M = 8 to M = 256;
similarly, the lower envelopes of figures 13 and 15 are fairly

close to each other.
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SUMMARY

The receiver operating characteristics of the sum-of-M-
largest processor have been determined for a wide variety of
values of M, the number of bins occupied by signal, and M, the
hypothesized number of occupied bins, for total search size
N = 1024. The false alarm probability was very accurately
evaluated by using the exact characteristic function of the
decision variable under Hyj the detection probability was
determined by simulations, each averaging about 10000 independent
trials.

The amount of loss associated with mismatch between M and M

can be significant. However, for N = 1024, if one compromises on

and uses the intermediate value of M = 32, regardless of the true
(unknown) value of M, the loss is no more than about 3 dB. If
some partial knowledge about the range of values of M is
available, a mid-range choice of M can be made, with reduced
losses in mismatch. Quantitative assessment of these losses are
possible from the results given here.

Some new results for the characteristic function of a
weighted sum of ordered data have been derived, and then used for
false alarm probability calculations. Extensions to the
characteristic function of the sum of distorted ordered data, as
well as to some joint characteristic functions, have also been
accomplished, although they were not used to obtain the numerical

results here.
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APPENDIX A. CHARACTERISTIC FUNCTION OF SUM OF M LARGEST

RANDOM VARIABLES OF A SET OF N EXPONENTIAL RANDOM VARIABLES

Consider N independent identically-distributed random
variables (RVs) (x 1} with common continuous probability density
function p and cumulative distribution function C. Then, the
probability that the py-th largest random variable xL lies in

interval u,u+du is given by [4; page 370]

gu(U) du = Pr{N-g RVs < u; p-1 RVs > u+du; 1 RV in du} =
=N [E:i] ce)™ ¥ 11 - cu)* ! pru) au . (A-1)

The probability density function of the p-th largest random
variable is gu.

More generally, consider two intervals centered on the values
u and v, where u > v, and let integers py < v. Then, the
probability that the p-th largest random variable x& lies in
u,u+du and that the v-th largest random variable X lies in

v,v+4dv is

gpv(u,v) du dv =

Pr{u-1 RVs ¢ (u,®); v-uy-1 RVs ¢ (v,u); N-v RVs ¢ (-=,v);
1 RV € (u,u+du); 1 RV ¢ (v,v+dv)]}] =
1

vow-n) (N3] (YY) - et e - 1Y x

x c¢(v)¥V p(u) p(v) du dv . (A-2)
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The joint probability density function of the y-th and v-th
largest random variables of set (x,} is guv'

Continuing in a similar fashion, the joint probability
density function of the M largest random variables, out of the
set of N independent identically-distributed random variables

{xn], is, for values uy > u, D ovee > Uy,

M
g(u11u21'0-luM) = N(N-1)---(N-M+1) C(UM)N-M l { p(um) . (A-3)
m=

We are interested in the characteristic function of the sum s of
the M largest random variables in set {xn}. Notice that the

components {xﬁ} of this sum consist of M statistically-dependent

non-Gaussian non-identically distributed random variables. The

desired characteristic function is given by

fs(E) = exp(ifs) = exp(i{[xi + eee 4 xﬁ]) =
= II---J du1 duz--- duM g(ul,uz,...,uM) exp(i{[u1 + o+ + uM]) =

® bt B UM-1
= J du1 exp(iEul) J du2 exp(i{uz)--' I duM exp(i{uM) g(uy,-..,uy)

- 0O -0 -0

= f duM exp(i{uM)'--f du2 exp(iEuz) I du1 exp(iEul) g(uqys-.e,uy).

-0 u u
3 2 (A-4)

The last form in (A-4) is more useful, because of the way that
cumulative C(uy) appears in the density g(ug,eeeruyli namely, the

integration on C(uy) is deferred to the last integral in (A-4).
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In general, substitution of (A-3) in (A-4) results in an
intractable multiple integral. However, for the case of an
exponential probability density function for original random

variables {xn],

p(u) = exp(-u) for un > 0 , (A-5)

all the manipulations can be carried out in closed form. To

demonstrate this, substitute (A-3) and (A-5) into (A-4) to obtain

fs(E) = F j duM exp(—zuM) [1 - exp(-uM)]N—M J duM_1 exp(-zuM_l) X
0 uy
X °--I du2 exp(—zuz) I du1 exp(-zul) ‘ (A-6)
u, u,

where we have defined
F = N(N-1)++-(N-M+1) , 2z =1 - if . (A-7)

Denote the integral on general term dum in (BA-6 as L.

Then, it is readily verified that

exp(—zuz) exp(-2zu3) exp(—(M—l)zuM)
I B tt—— r I = L N I = -
1 z 2 2 z2 ! ! M-1 (M-1) ! zM-l
(A-8)

Utilization of the last result in (A-8) yields, from (A-6),

@

£ (8) = F ) I duy, (1 - exp(—uM)]N-M exp(-Mzuy,) . (A-9)

(M-1)! z 5
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At this point, we use the integral result

© 1
I du [1 - exp(—u)]K exp(-cu) = I dt (1 - t)K tc—l =
0 0
T'(K K! .
- r‘§2c+§+1§l = ) s for K integer , Re(c) > 0 , (A-10)

which is available from [5; 8.380 1 and 8.384 1]). Then, (A-9)
takes on the final form for the characteristic function of the

sum s of the M largest random variables of set [xn}, namely

F (N-M)! = 1
M-1 (Mz),. _ N
(M-1)! 2z N-M+1 (1 - iE)M 1 T_T{l _ i{%]
=M

£,(8) » (A-11)

where we have used (A-7) to simplify the end result. This
compact closed form expression for fs(E) is readily numerically
evaluated and is well suited to the numerical methods in [3]
for accurately and efficiently determining the false alarm
probability of sum random variable s. (More generally, the
characteristic function of an arbitrary weighted sum of ordered
data {x; 1 is accomplished in (B-20) - (B-21)).

It is also interesting to observe that (A-11) corresponds to

the characteristic function of a sum of N independent exponential

random variables {y,! with non-identical probability density

functions
1 for 1 £ n <M

p.(u) = a_ exp(-a_u) with a_ = . (A-12)
n n n n ﬁ for M+1 < n <N
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The first M random variables of auxiliary set [yn} have mean
values 1, while the remainder have decreasing mean values M/n for
M+l < n < N.

The cumulants of the sum random variable s follow upon
expansion of the natural logarithm of (A-11) in a power series in

if; the k-th cumulant is

N
xg(k) = (k-1)! [M MRy -%] for k 2 1 . (A-13)
n=M+1 n

In particular, the mean and variance of sum s are

N, 2 & 1
xs(l) =M+ M _E Y XS(Z) =M+ M E -5 - (A-14)
n=M+1 n=M+1 n

The mean of s tends logarithmically to infinity as N » «, while
the variance and all the other higher-order cumulants of s
saturate at finite values as N increases.

The characteristic function fs(E) of sum s in (A-11) can be

written in the form

_ 1 1 - -
£,(8) = = £ (8) £.(8) . (A-15)

N N

The probability density functions corresponding to these two

factors are expressible in the closed forms

M-1
p,(u) = 4 (Mff?{'“l for u > 0 , (A-16)

-1

Pp(u) = Hﬁﬂ [g] exp[- Mglu] (1 - exp(—u/M)]N'M for u > 0 .
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The latter relation can be verified directly by using result
(A-10) with K = N-M-1 and c = M+1-ifM. However, the convolution
of the two density functions P, and Pp in (A-16) has not led to
any useful expressions for the probability density function or
exceedance distribution function of sum s.

More generally, the following are a Fourier transform pair:

pc(u) = %T [%]K+1 exp(~au) [1 - exp(-Bu)]K for u > 0 ,

-1

K .

fc(E) = {I é[l - ET%EEH]} ; K integer , a > 0 , B > 0 . (A-17)
n=

The k-th cumulant of this pair is

K

x (k) = (k-1)1 ¥ —
n=0 (a + B8n)

m for k 2 1 , (A-18)
which is a finite sum of positive terms. This means that the
corresponding k-th moment,

© [+ ]
po(k) = I du u¥ P.(u) = gT (%] J du uX e (1 - e-ﬁu]K (A-19)

: K+1

0 0
can be expressed as a finite collection of positive terms.
Specifically, the k-th moment can be easily and accurately

obtained, to high order, by the recursion [6; page 94, (A-6)]

=

-1
ﬂc(k) = g;% [k;l] xc(k-m) yc(m) for k 21, pc(O) =1, (A-20)

which involves only positive terms. For example,
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(1) = Xo(1) o B(2) = xo(2) *+ xo (1) ug (1) = xo(2) + x2(1)
He(3) = X (3) + 2 X (2) p (1) + x (1) p (2) =

= Xo(3) + 3 x(2) X (1) + x2(1) . (A-21)

By letting t = exp(-u) in (A-19), we have the ability to
evaluate the following integral in terms of finite sums of
positive quantities:

ue (k) = & [%]K+1 { dt [-ln(t))¥ 2! [1 - tB]K . (A-22)

The larger k values will require use of positive recursion
(A-20). Parameters k and K are integers, while a and B are
positive real.

As an application of the result in (A-17), the characteristic
function of the uy-th largest random variable in (A-1), for

probability density function (A-5), is immediately found to be

?:$ ik - N ik o
fp(z) - {k=0[1 - v+ k } = {;I.;:‘!;[l - n—)} ! (A-23)

which contains only N+1-y factors. Here, 1 < y < N. The k-th

cumulant of the u-th largest random variable is therefore

|-

for k 2 1 . (A-24)

.

N
X, (k) = (k=1)! § _
n=y n

In a similar vein, the joint characteristic function of the

pu-th largest random variable xL and the v-th largest random
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variable X0 with y < v, can be found from (A-2) and (A-S5) in

closed form

fpv(E,L) = exp(iExL + ilxc) = JI du dv gpv(u,v) exp(ifu + iZv) =

= J dv exp(ilv) I du exp(ifu) gyv(u,v)

- v
v-1 13 N iF o+ i -1

={'I_T[1--;—]T_|'[1-1—-—n——€]} for 1 < p < v < N . (A-25)
=y n=vy

This form contains a total of N+1-y factors, no matter what value
the integer v has. If L = 0, (A-25) reduces to (A-23), as

expected. On the other hand, if § = 0, then (A-25) reduces to

N oL :
{I I[l - %L)} ’ (A-26)
n=v
which has a form identical to (A-23), again as expected.

The joint cumulants of the p-th largest random variable x&
and the v-th largest random variable xé of set {xn], with py < v,

can be found from the expansion of (A-25) according to

- N VI Lt S| : g
In £, 0(8,8) =3 g[8 L_ ¢+ (g + i) T | - (a-27)
k=1 n=y n n=v n
Thus, we have
N N
mean{x’'} = o mean{x;} = E o (A-28)
H n=y n=v

and
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N N
’ = ..._1. ’ = '’ ’ = —-]-'-
var[xﬂ} = E 5 var[xv} cov[xy,xvl E_ 3 -+ (A-29)
n=y n n=v n
Observe that the covariance between xL and X is equal to the
variance of x;. Also, the covariance coefficient between x& and
x; is
N 1 N 1 A
[2“_“—7 :—2] ; 1Sp<vsnN. (A-30)
n=v n n=g n
Thus, for large N, the two largest random variables of a set of N
exponential random variables have a covariance coefficient of
(n2-6)%/n = .626, while the largest and smallest random variables
have a covariance coefficient of v6/(nN) = .780/N.
More generally, the k,m joint cumulant of x& and X, follows

from (A-27) as

(k-1)! Sp(k) form=0, k 21

Xy\,(klm) = ’ (A-31)
(k+m-1)! Sv(k+m) form 2 1
where
N 1 -
Sj(k)EE.:T for 1 £ j <N, 1<k. (A-32)
n=j] n

The characteristic function of the difference between the
y-th largest and the v-th largest random variables is obtained

directly from (A-25) by setting 7 = -&:

. v-1 ik
£y (8m8) = SRIE(, - 20 = |1 L[l o PN T S £
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which has v-y factors. Thus, the difference of adjacent ordered
random variables, that is, v = py + 1, has an exponential
probability density function with mean value 1/u.

Most generally, it is shown in appendix B that the M-th order
joint characteristic function of the pl-th largest random
variable x&l, the uz—th largest random variable xLz,..., and the
pM-th largest random variable xL of original set {x,}, for

M
1 < py < py < vor <py SN, is

f(Ll,Cz,...,CM) = exp(ileL1+ iszL2+ cee + iLMxAM] = (A-34)
Hp-1 i¢,, M371 i¢
={1—r (- TT (-3 x -
n=y, n=y,
Hy~1 i¢ N ig. 177 |
ST - - e
s VB N=Hy

where we have defined

¢ =Gy PGyt s+ L forl <m< M. (A-36)

The characteristic function in (A-35) reduces to first-order
result (A-11) when we set Cl = Cz = s = CM = §, and set Hy = 1,
Hy = 2,000e, Hy = M. A numerical confirmation of general result

(A-35) was obtained by simulation for the fourth-order example

M=4, N =19, Hy = 3, Hy = 6, Hy = 11, Hy = 16,

Ll = .31, Cz = -.53, C3 = .97, L4 = .77. (A-37)
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The exact result from (A-35) is .71239 + i .65022, whereas the
simulation yielded estimate .71246 + i .65015, based upon
5,000,000 independent trials of ensemble average (A-34).

An application of (A-35) to the M largest random variables of
set [xn] is afforded by choosing Hp = M for 1 < m < M, to obtain

the M-th order joint characteristic function

- i ; -1
E(Tyreeeily) = {i:rh - i:-“] ﬁ—rm[l " E;_M]} -

M i N i -1
R FLLLE ) e

If we set Cl = Cz = e = CM = ¥, and use (A-36), this reduces to
(A-11).

The results above can be used to find statistics of some
nonlinear transformations of ordered data [xﬁ}. For example, the

sum of the M largest squares is given by
M2
z =) :xL . (A-39)
From (A-24), we know that

(A-40)

"
(=
ol

=] L

' Var(xL) = xu(2)

N
X’ = 1 =
x, = x,(1) g

Therefore, the mean of z is given by
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_ M N_ )2 N,
s-r g vy -
p=1 n=y n=y n
= -~ min(n,m,M) + M - + = = M[y + v ] . (A-41)
n,m=1 nm n=M n2 n=1 " 1 2
after considerable manipulation, where .
:N 1
n=M+1 n
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APPENDIX B. JOINT CHARACTERISTIC FUNCTION
OF N ORDERED INDEPENDENT RANDOM VARIABLES

Let [xn} be a set of N independent random variables, where

the probability density function of the n-th random variable X

is p(u,n); the variables need not be identically distributed.
Order these random variables into the new set [xﬁ}, where

X; > x5 > e > xp. We will evaluate the N-th order joint
characteristic function of this ordered set, namely

£(Eyre00/8y) = exp(icyxy + == + 1&ox0) (B-1)

for arbitrary values of {Enl, when probability density functions

{p(u,n)} of {xn} are exponential. That is, we will consider
p(u,n) = a(n) exp[-u a(n)] foru >0, 1 <£n<N. (B-2)

The ordered random variables {x;} are highly statistically
dependent on each other and are distinctly non-Gaussian.

Observe that knowledge of (B-1) allows ready evaluation of
the characteristic function of any weighted sum of the ordered
random variables, by simply choosing {n = { LA That is, for the

weighted sum of the ordered variables,
N
s =Y _w x|, (B-3)

we have characteristic function

N
£ (&) = exp(ils) = exp[i{ > W xﬁ] £(EW s eeesBWy) « (B-4)
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Thus, for example, by choosing only the first M weights of
sequence (w_ } nonzero, we can investigate the M largest random
variables of original set {xnl of size N. Alternatively, for
example, by taking only £3 and ES nonzero in (B-1), we can
investigate the combination of the third-largest and fifth-
largest random variables in set {x 1.

Before we begin the derivation of (B-1), we must consider all

possible permutations of the integers 1,2,...,N. For N = 3 for

example, there are the N! 6 possibilities 123, 132, 213, 231,

312, and 321. We label these six sequences according to

k11 =1, k12 = 2, k13 = 3; k21 =1, k22 = 3, k23 = 2;
k31 = 2, k32 =1, k33 = 3; k41 = 2, k42 = 3, k43 = 1;
k51 = 3, k52 =1, k53 = 2; k61 = 3, k62 = 2, k63 = 1.

In general, the j-th permutation out of the total of N! possible

JN
we have a matrix of integers {kjn} for 1 < j < N!, 1 £ n < N.

permutations is indicated by the sequence kjl' ka,...,k. . Thus,

The joint probability density function of the ordered set of

N random variables {xﬁ} can now be written in the form

N N

g(ul,uz,...,uN) =2 - | 1 p(un,kjn) for u, > u, > s D uy
J= n=

(B-5)

and zero otherwise. The N-th order joint characteristic function

of the ordered random variables {xﬁ} is then given by

f(El,...,EN) = exp(i{lxi + e 4+ iENx&) =

= I-'-I du1~'-duN g(uy,eeruy) exp(i{lu1 + e 4+ iENuN)
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N! (- «©
= — I duN p(uN,ij) exp(lENuN) J duN_1 p(uN-l'kj,N—l) x
- u
N

@

x exp(iEN_luN_l) X eee X I du2 p(uz,ka) exp(i{zuz) x

X f du1 p(ul’kjl) exp(i{lul) . (B~-6)
u
2

The result in (B-6) is general, holding for any probability
density functions {p(u,n)}. However, one of the few cases where
it can actually be evaluated is for the exponential densities

given in (B-2). Substitution yields

N!

£(Eqreenry) =37

1 duN g(ij) exp[—uN sz] x

Ot— 8

©

x [ auy a(ky, n-1) exP(‘“N-l zj,N—l] X e
UN

«© «©
b I du2 g(ka) exp[-—u2 zj2] I du1 g(kjl) exp[-—u1 zjl] . (B-=-7)
U3 U2

where we have defined complex quantities

z. = a(k - i for 1 < n <N

sn = 2lkyp) N , 1 <3 <Nt (B-8)

The factor involving the product of coefficients is given by
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a(n) = A, (B-9)

1=

2(ij) -a_(kle"l) X see X ..a.(ka) Q(kjl) = N

regardless of the value of j, the particular permutation.

in (B-7) by 1I.

We denote the integral on u ;

n n’ and let

ejn = zjl + zj2 + o 4+ zjn for 1 <n <N, 1< 3j <N . (B-10)

Then, excluding factor g(kjn), we find, in order,

exp(-u, 9.,) exp(-u, 6..,)
g m il n, - TR
? j1 j1 °j2
I‘ =exp(‘UN %,N"l) , I. - 1 . (B_ll)
],N"l ejl e ej’N_l JN ejl ej2 e e ejN

The use of (B-9) and (B-11) in (B-7) finally yields the joint
characteristic function of the ordered random variables [xﬁ} in

the form

f({l'..""“N) =AE‘ e. e . .o e- ’ (B—12)
where {ejn] are given by (B-10) and (B-8). By combining these
latter expressions, we find, for 1 < j < N!, 1 £ n £ N,

n n
ejn = hjn - 1""“ 4 njn = g Q(kjp) ’ ‘Pn = E Ep . (8—13)

The major problem with result (B-12) is the impossibility of
evaluating all N! terms, especially for large N. Even if we are

interested only in the sum of the first M terms of ordered
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sequence {xﬁ}, that is, the sum of the M largest random variables
of original sequence (x.1, that only allows for the

simplification of [wn} in (B-13) to the form

(B-14)

nt for l1 <n<M
v, = ,

M for M+l £ n £ N

where we have let En =§ for 1 £ n £ M, and zero otherwise, in
(B-1). There is no accompanying simplification in the tedious
calculation of [hjn} in (B-13).

If the exponential probability density functions in (B-2) are
characterized by equal signal components in the first M terms
(without loss of generality) and noise otherwise, then we have

the special case

a(n) = (B-15)

{g for 1 < n < ﬂ}

1 otherwise

Now, consider the first n terms of the j-th permutation, namely

kjl’ jareeee kjn' Let the number of times that any of the

numbers 1, 2,..., M occurs in these first n locations of

k

permutation j be denoted by L(j,n). Then, from (B-13) and

(B-15), we find

hyp = & L(3,n) + [n - L(3,n)] = b L(j,n) +n, (B-16)

where we have defined b = a - 1. The joint characteristic

function follows from (B-12) as

1
b L(j,n) +n - 1y ' (B-17)

jz

M N

B(Eyoeeeify) =2 3T

0

]
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where we also used (B-9) to determine A. This result requires
determination of all the integers {L(j,n)} for its evaluation,
which appears to be a formidable task, in general. Furthermore,
this is the simpler case of equal signal components in the first
M terms.

The special case of no signal in any bins corresponds to
a =1 in (B-15), thereby giving b = 0. This causes all the

dependence on {L(j,n)} in (B-17) to disappear, thereby yielding

N
_ 1
E(Epsennsy) =1 I[T—:—;¢;7;] , (B-18)

n=1

where sequence (¥, } is given by (B-13). This is the joint
characteristic function (B-1) of ordered sequence {xﬁ], when all
the original random variables {xn} have the common probability
density function exp(-u) for u > 0.

As an application of (B-18), consider thet all the (En} are
zero, excej't that EF #0, & #0,.0., & # 0. Then, (B-13)

1 Ha Hum
yields

Wl = 10 or 08, &, er E, 4 E, ) (B-19)
in which case (B-18) reduces to (A-34) - (A-36).

We can also use (B-18) to determine the characteristic
function of the weighted sum s of {xﬁ} defined in (B-3), for the
case of no signal present. Namely, from (B-4) and (B-13) with
the identification of Ep as ¢ wp, there follows the

char-acteristic function of the noise 'y sum s as
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N -1
.08 = (T Tl - igw] (B-20)
n=1
where the n-th coefficient

for 1 £ n <N (B-21)

=
]
]
=] L
[

w
=1 K

can be interpreted as the average of the first n weights. The

k-th cumulant of noise-only sum s follows from (B-20) as

=

Xg(k) = (k-1)! y wﬁ for k 2 1 . (B-22)

n=1

For the special case of all the weights [wn] equal to 1, then
W =1 for all n, and (B-20) reduces to (1 - il’.)-N as expected,
since the total sum of the ordered data is equal to the sum of
the original data, and there is no signal present. On the other
hand, if only the first M weights [wn} are 1, while the remainder
are zero, then W, = 1 for 1 < n £ M, and W, = M/n for M < n £ N.
Then, (B-20) immed:.ately reduces to (A-11), as expected for this
noise-only case.

As a partial check on general result (B-17), let M = N, which
means that all N bins contain equal signal components (when
signal is present). Then, by the definition under (B-15), we

have L(j,n) = n, independent of permutation number j. The

characteristic function in (B-17) then simplifies to

N ¥ -1
f(El,...,EN) = {1:{[1 -1 'n—_a-' } ' (B-23)
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which is an obvious generalization of (B-18).

As an illustration of the type of analysis required to
simplify (B-17) for equal signal components, consider the example
of N=4, M = 2. Of the N! = 24 possible sequences that {L(j,n)}
can take on, there are only 6 different kinds that can occur;

they are

1222, 1122, 1112, 0122, 0112, 001 2.

Furthermore, each type occurs exactly 4 times. Expression

(B-17) then specializes to

(8,8, 85,8,) = 432[%; boaee s %Z] , (B-24)

where

Dy = (b*+l-ivy) (2b+2-iv,) (2b+3-ivy) (2b*4-id,) |

D, = (b+l-iy;)( b+2-iy,)(2b+3-iy,)(2b+d-iy,) ,

Dy = (b+1l-iy,)( b+2-iy,)( b+3-iy,)(2b+d-iy,) ,

D, = ( 1-iyy)( b+2-iy,)(2b+3-iy;)(2b+td-ig,) ,

Dg = ( 1-ig))( b+2-iv,)( b+3-iyy) (2b+d-id,) |

D = ( 1-iyy)(  2-iy)( b+3-iy;)(2b+4-iy,) . (B-25)
For the numerical example of El = ,31, {2 = ~,53, E3 = ,97,
E4 = .77, a = .71, the exact answer from (B-24) - (B-25) is

.474694 + i .653188, while a simulation result based on
27,000,000 statistically independent trials yielded estimate

.474647 + 1 .653168.
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Other numerical examples have indicated that, in general,
there are binomial coefficient (N|M) different possible sequences
for {L(j,n)}. Although this integer (N|M) can be significantly
less than N!, it is still much too large for most practical
situations where N is generally much larger than 1. Application
of general results (B-12) or (B-17) for the joint characteristic
function of the ordered data appears to be limited to very

special cases.
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APPENDIX C. MAXIMUM DEFLECTION OF WEIGHTED SUM OF ORDERED DATA

The random variable of interest here is

-

=
]
—

" xﬁ ’ (C-1)

where original data [xn} is composed of independent and
identically-distributed exponential random variables. It has
been ordered into descending set {xﬁ]. Under H,, the
characteristic function of z is, from (B-20) and (B-21),

N

N -1
fO(E) = ] I[l - iEWn] ’ W, = % ) wp for 1 < n <N . (C-2)
n=1 : p=1

If we were given coefficients (W }, we can solve for weights (w,}

according to (with Wy = 0)

wo=n wn - (n-1) wn_1 for 1 < n <N . (C-3)

The mean and variance of z under Ho are, directly from (C-2),

k
"n

(=

2 2
p0=:wnl °0=:wn’ Xo(k)=

n=1 n=1 n=1

. (C-4)

Now, let the means of the n-th random variable xﬁ under Hl

and H, be Hin and Hon* respectively. Define

An = Uin ~ Hon for 1 < n $ N . (C-5)

Then, the difference of the mean outputs of z is, using (C-3),
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N N
Az = 2 w_(p - Pa) = E w_ A =
=1 n‘“1in On =1 n n
N N
=) An[n W - (n-1) wn_l) =3 :wn n (8, - B8..q) (C-6)

n=l n=1

where AN+1 2 0. Also, the deflection of z is

N 2
~ 2 [Z;: Wyn (8, - An+1)]
d2 = (AgL = n=1 N . (C-7)
% y wi
n=1
The optimum coefficients (W} for maximum d2 follow
immediately from (C-7) as
ﬁn = an (An - An+l) for 1 £ n £ N, (a arbitrary) (C-8)
giving
d2 = EN n2 A - A 2 Cc-9
max (8, n+1) (€-3)

n=1

The optimum weights for maximum deflection are, from (C-3)

and (C-8) (with 8y = 0),

W_=n ﬁn - (n-1) W = a(nz(An - b8 4q) - (n—l)z(An_1 - An)] =

n n-1

= a[[n2+(n-1)2]A - n?a

2
n n+1 ~ (R-1)74

n-l} for 1 <n < N . (C-10)

Finally, we can scale everything by choice of a so that Ql =1,

~

without loss of generality; then, W, = 1.
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APPENDIX D. CHARACTERISTIC FUNCTION OF THE SUM OF THE DISTORTED
M LARGEST RANDOM VARIABLES OF AN INDEPENDENT SET OF SIZE N

Real random variables {xn}, 1 < n £ N, are independent and
identically distributed, with arbitrary probability density
function p, cumulative distribution function C, and exceedance
distribution function E. We order this original set of random

variables into a new set {xﬁ], where

xi 2 xé 2 v 2 xﬁ . (D-1)

This ordered set of random variables is non-Gaussian, heavily
statistically dependent, and not identically distributed.

We select the initial M random variables of the ordered set
[xﬁ}, that is, the M largest random variables of original set
(x,}, and subject them to the common arbitrary memoryless
nonlinear transformation h (which could be complex). We then sum
these M distorted random variables, obtaining the output random

variable s of interest:

/7]
0
[l

h(x’) . (D-2,
n=1 n
We are interested in obtaining the exact characteristic function
of s, for general N, M, h, and p, despite the deleterious
statistical properties of the ordered set [xﬁ], that were noted

under (D-1). In particular, we want the statistical average

fs(E) = exp(1fs) = exp[iih(xi) + 0 + i{h(xﬁ)] . (D-3)

75




TR 10739

From (A-4), the joint probability density function of the M

largest random variables of set (x,} is given by
N-M
g(uyseecruy) = F p(uy) --° pluy) C(uy) (D-4)

for u,y 2 u, 2 e 2 Uy e where F = N(N-1)+-+(N+1-M). Therefore,
average (D-3) can be expressed as the multiple integral

F [ du, expligh(uy)) plu,) cruy)™™ x

-0

£.(8)

-

b3 I duM_1 exp[iEh(uM_l)] p(uM_l) X oo

UM
x +++ [ du, exp(ifh(u,)1 p(u,y) [ du; exp(ifh(uy)] p(uy) . (D-5)
ujy U

In order to simplify this multiple integral, define function

E(u;f) = j dx exp[i&h(x)]) p(x) . (D-6)
u

This integral is presumed convergent for all u where p is non-
zero. Special cases of (D-6) are E(=;{) = 0, and E(u;0) = E(u),
which is the ordinary exceedance distribution function of
original set [xn}. Also, E(-=»,¥) is the characteristic function
of the output of nonlinear device h subject to a random input
with probability density function p. Thus, E(u;{) is a mixture

of an exceedance distribution and a characteristic function.
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Holding parameter ! fixed, the derivative of E(u;&) with

respect to u is denoted by a prime, getting

la

E'(u;¥) = E(u;&) = - exp[ith(u)] p(u) . {D-7)

o,

u

Now, denote the general integral on ug in (D-5) as I . Then, we
immediately have I, = E(uz;E). Proceeding to the integral on u,
in (D-5), we can develop it as
«©
12 = f du2 exp[i{h(uz)] p(uz) E(uz;{) =
Y3
-}
= - [ av, E*(uy58) E(uyiE) = L pu,;e? (D-8)
2 2’ 2’ 2 3 )
Y3
Continuing in this fashion, one integral at a time in (D-5), we

arrive at the result for the Uy_1q integral, namely

1 L M-1
In-1 = -1)7 E(uyi®) . (D-9)

Finally, the last integral on uy in (D-5) can be expressed as

£ 8) =M (N [ av expritnqu)y pew) ™M Euiey™t L (p-10)
where we have simplified the leading constant F/(M-1)!. This
result in (D-10) holds for N 2 M. It is a single integral for
the characteristic function of sum random variable s defined in
(D-2). If N > M, we can integrate by parts on (D-10), using

(D-7), to obtain the alternative
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£.(E) = (N-M) [g] I du p(u) c(u)¥V M1 gru; )M . (D-11)

It should be noted that unequal weights {wn} in sum (D-2) are
strictly disallowed in the current analysis. The simplification
in (D-8) and (D-9) occurs only when exactly the same h function
appears in the successive integrals on uy through uy_1+ A
generalization that includes weights in (D-2) is only possible
for very special probability density functions and nonlinear
transformations. One such case is exponential p and linear h.

Several checks on these general results are possible. For

§{ =0, we have from (D-11) and (D-6),

£,(0) = (N-M) (ﬂ] I du p(u) c(u)¥ M1 gu)M -
1
= (N-M) [S] f ax VM1 o oMoy, (D-12)
0

using [5; 8.380 1 and 8.384 1].
On the other hand, for M = N, we use (D-10), (D-6), and (D-7)

to obtain

£(8) = N [ du (-B(w;0)1 B )V = B(-e; )Y =

-0

2 N N
= [I dx exp{ifh(x)] p(x)] = exp[i{h(xn)] . (D-13)

«©
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This latter expression is recognized as the characteristic

function of the sum s, when it is observed that, for M = N,

=
U
2
2z

ﬁ

h(x!) =3 _ h(x_ ) , (D-14)

n=1

=}
"
Y

and that original set [xn} is composed of independent identically
distributed random variables with probability density function p.
Finally, for M = 1, (D-10) and (D-7) yield

fs(E) =N I du exp{i&h(u)] p(u) C(u)N-l =

- Q0

- ]

= j du exp(ifh(u)] 3% C(u)N = exp[iEh(xi)] . (D-15)

-0

The last step in (D-15) is accomplished by observing that the
cumulative distribution function of the maximum, X]s of set {x 1}

is just C(u)N. And, for M = 1, (D-2) reduces to s = h(xi).

MEAN OF SUM s IN (D-2)

In order to find the mean of the random variable s defined by

(D-2), we begin by expanding (D-6) in a series about § = 0:

E(u;&) ~ E(u) + i¥ H(u) as & » 0 , (D-16)
where
H(u) = j dx h(x) p(x) . {D-17)
u
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Then, for small §, (D-11) yields

(N-M) [S] I du p(u) c(u)¥ M1 [ + itm gu)M? H(u)]=

£,(8)

1

et a) , (p-18)

=1+ if M (N-M) [E] } du p(u) c(u)¥ ™M

upon use of (D-12). Therefore, the mean of sum s is given by the

single integral

g = M (N-M) [S] f du p(u) c()¥ ML ()™ ! wew) . (D-19)

-0
A similar expansion of E(u;&) and f_(&) to second order gives the
second moment of s in the form

-1

M (N-M) [g] I du p(u) C(u)N'M E(u)M'2 [E(u) H(u) + (M-1) H(u)zl

[-

(D-20)

where

B) = | ax hx)? pex) (D-21)
u
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EXAMPLE 1: h(x) = x, p(u) = exp(-u) for u > 0.

According to (D-2), this corresponds to
M
s = Z xﬁ ‘ (D-22)

which is the sum of the M largest exponential random variables.
Then, (D-6) yields E(u;f) = exp(-u(1-1&))/(1-i§) for u > 0, and

(D-11) becomes, for N > M,

©©

£ (8) = (N-M) (N] —2— [ qu e™ [1-e7® NH-1 ui-inm
S oM
[N] dx (1ox)N-M-1 L (1-iE)M _
(1- 1E)
= [ - i)™ IﬁIl[l - i&%]]_l , (D-23)

upon letting x = e™", and using [5; 8.380 1 and 8.384 1]. This

result agrees with (A-11).

EXAMPLE 2: h(x) = xz, p(u) = exp{-u) for u > 0.

This corresponds to the sum of the squares of the M largest
exponential random variables. Now, (D-6) yields [7; chapter 7)
(-]

E(u;&) = I dx exp(i{x2 - x) = (E%]% exp[i% + i{uz - u] v{ia + iB)

u
(D-24)
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for u > 0 and § > 0, where real quantities
o -l e @ ) o

It should be observed, that since § > 0 in (D-24), and u > 0 in
integral (D-11) for this example, then B > 0 in (D-25); this
means that the real part of w in (D-24) is always positive

[7; 7.4.13]). This fact can be used to simplify the calculation
of the argument of w, which is needed for (D-11). The final
result for the characteristic function of sum s follows from
(D~11) in the integral form

£_(E) = (N-M) [g] T du e [1 - e‘“]N-M_1 E(u; ), (D-26)
0

which must be done numerically, by means of (D-24).

EXAMPLE 3: h(x) = x, p(u) = ¢(u), C(u) = &(u) for all u.

This case corresponds to the sum of the M largest normalized
Gaussian random variables; here, ¢(u) = (2n)'% exp(-u2/2) for all

u. In this case, (D-6) yields, for all u,

E(u;E) = jf dx exp(ifx) é(x) = -21- exp(i{u - %E] w[%—iﬂ] . (D-27)
u

The corresponding characteristic function of sum s is, from

(D-ll)l
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£.(E) = (N-M) [:] j du ¢(u) e(u)V ML gu; )M . (D-28)

Extension to a general mean m and standard deviation ¢ for
original set (x,} is easily accomplished; the result is

exp(i&fmM) fs(Ea).

EXAMPLE 4: h(x) = xz, p(u) = ¢(u) for all u.

This example corresponds to the sum of the squares of the M
largest normalized Gaussian random variables. Now, (D-6) yields,

for all u,

E(u;§) = I dx exp(i&xz) $(x) =
u

2 .
- 1,{2)% exp[- - (1 - ie2)] wlu 75 (1 - 182)7) . (D-29)
-1

The characteristic function of sum s is now given by (D-11) as
£8) = (=) () [ qu ey o™ g™ . (0-30)

This result is easily extended to a standard deviation o # 1 for
original set {x.1, namely fs(Eoz); however, it is not easily

extended to mean m # O.
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The last three examples of characteristic functions rely
heavily on an accurate efficient routine for calculating the
error function of complex argument, w; see (D-24), (D-27), and
(D-29). By contrast, the characteristic function result in
(D-23) for the first example is in closed form. The following
example will demonstrate a possible limitation of a different

kind.

EXAMPLE 5: h(x) = x, p(u) = exp(-u) uK‘l/(x-l)z for u > 0.

As in (D-22), this is the sum of the M largest random
variables but where the original random variables {xnl are now
chi-squared with 2K degrees of freedom. Then, (D-6) yields

closed form

. K-1 k ... K
E(u;f) = &Xp(-u(1-18)) ¢—=u (1-38) ¢4y 5 0o . (D-31)
.». K — k!
(1-i%) k=0
The cumulative distribution function is
K-1 uk
C(u) =1 - E(u;0) =1 ~ exp(-u) E — for u > 0 . (D-32)

Substitution of these results in (D-11) yields the characteristic

function of sum s in the form

® N-M-1
K-1 K-1 k
_ N -u _u _ a~u u_
£(8) = (v-4) ) [ au e™ gy [1 e x
0
o [expCug-in) §520F g-ig* " (D-33
(l-iE)K =% k! ' )
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which must be done numerically for each  of interest. (For K=1,
(D-33) reduces to (D-23).) The latter sum on k in (D-33) is an
alternating one, which could be troublesome for large u and/or E.
A possible alternative is to directly evaluate integral (D-6)

numerically; it is a Fourier transform for this example.

MEANS OF SUM s FOR FOUR EXAMPLES

The mean of sum s defined in (D-2) was given generally by
integral (D-19), in conjunction with (D-17). For example 1, we

find H(u) = e (1+u) for u > 0, and Hg = M v, where

v
-
.

(D-34)

P Lad

N
Yk51+§ — for k

More generally, the k-th cumulant of sum s for this example,
Xg(k), is given in (A-13).

U1 +u+ u2/2) for

For example 2, there follows H(u) = 2 e
u > 0, and Hg = M(y% + Yy), where we used (A-17) - (A-21). The
results for mean Hgr in both of these examples, involve only sums
of positive terms; see (D-34).

For example 3, we have
H(u) = I dx x ¢(x) = ¢(u) for all u , (D-35)
u

thereby giving

85




TR 10739

pg =1 n-M) (N] [ aw e s - s ™, (0-36)

which must be done numerically.

For example 4, H(u) = u ¢(u) + 1 - ¥(u), yielding

-1

g = M + M (N-H) [3) J du u ()2 e(u)¥M ! (1 - su) ™t (p-37)

-0

Finally, for example 5, we have
K. u
H(u) = K exp(-u) E T for u > 0 , (D-38)

with mean

K k+K-1

0 k=0
g k=1 )N kel ok M-1
x 1 -ey % - . (D-39)
k=0 * k=0
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APPENDIX E. RECEIVER OPERATING CHARACTERISTICS
FOR SUM-OF-M-LARGEST PROCESSOR

The sum-of-M-largest (SOML) processor is characterized

according to (28) by the summation

M >
z = E xﬁ <V - (E-1)

Here, random variables [xﬁ] are the ordered version of given data
{x,} for 1 < n £ N. Summation limit M is a hypothesized or
assumed value for the number of bins occupied by signal. The
actual number of occupied bins is M. The following receiver
operating characteristics (ROC) are plotted for N = 1024, and for
M and M taking on the values listed in (34) and (35),
respectively. The quantity S(dB) is the common value of the
signal power per bin in dB. Since the noise power per bin has
been normalized at unity, S is also the signal-to-noise ratio per
bin. The number of trials utilized for the detection probability
in each case is noted on the individual figure. The false alarm
probability was determined exactly from characteristic function
(29). The bottom-most straight line at 45° corresponds to S = 0,

that is, S(dB) = -» dB; it lies along Py = Pg.
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APPENDIX F. ON THE CHOICE OF M WHEN M IS KNOWN

The total number of search bins is N, and the number of
occupied signal bins (when signal is present) is M, which is
known. However, the locations L of these M bins are totally
unknown. Under both hypotheses H, and Hy, the average noise
power in all N bins is 1; under H;, the average signal power in
the M occupied signal bins is common value S, which is unknown.

The GLR test is to sum the M largest values of the input data
(xn} and compare the sum with a threshold. This is equivalent to

ordering the input data into the set {xﬁ}, where xﬁ 2 for

Xn+1
1 < n £ N-1, summing the first M values, and comparing the sum
with the same threshold. Although this test appears to agree
with physical intuition, simulations reveal that better
performance, in terms of Pd versus Pf, are obtained if the
largest M bin outputs are summed, where M is sémetimes different
from M. This means that the GLR test is not optimum in this
situation; of course, the GLR procedure makes no claim for
optimality, although it frequently leads to a high quality test.
The explanation and remedy to this apparent discrepancy follows.
Under Hy, the average level of x is 1. On the other hand,
under H,, the average levei of x  is changed to 1+S in the M
occupied signal bins, but only for these M bins which contain
signal. The remaining N-M bins still have average level 1 under
H,. Unfortunately, since the information about which particular

bins are occupied is unknown, we are led to consider the ordered

data {xﬁ], which contain identical information to {xn} under this
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situation. Even if we ignore any guidance from the GLR
procedure, a justification for considering ordered data is that
the presence of signal results in M larger data values on
average, and therefore, larger values should get more weight.

For the ordered data {xﬁ}, the situation regarding average
values is somewhat different. Under Hy, the average level of x
decreases monotonically with n. When signal is added to M bins
under Hl and the data {xn} ordered, the average levels of all N
data values x  are increased, not just the first M bins. 1In
order to demonstrate this claim, let the first M bins contain the
signal; this is no loss of generality, since we are not going to
use this fact in our data processing. Now, under H,, the act of
ordering the measured data lxn} evicts some of the smaller signal
members from their initial locations in set [1,M] into new
quarters in the set of numbers [M+1,N] in data sequence {xﬁ}.
Thus, when Hy is prevalent, the signal addition and bin movement
raises the average levels of {xﬁ}, not just for 1 < n < M, but
also for some n values larger than M. Some examples have shown
increases all the way out to n = N.

For improved performance, we must be willing to look for
average deflections in any and all bins. Therefore, even though
we may know that only M bins are occupied by signal, we must
process M bins of the ordered data {xﬁ}, where M can be larger
(or smaller) than M, due to the spillover effect described above.
In order to settle on near-optimum values of M to use, it is
necessary to conduct simulations of the receiver operating

characteristics for various combinations of N, S, M, and M.
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